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• Biot-Savart Law
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• Maxwell’s Equations for Static Fields

• Gauss’s law for magnetic field

• Magnetic Boundary Conditions

• Magnetic Forces and Inductance

• Magnetic energy density
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Intended Learning Outcomes 

• Define the magnetic field and show how it arises from a current distribution.

• Apply ampere’s circuital law to simplify many problems like determine magnetic field of loop
current, solenoid, and toroid.

• Force on a moving point charge and on a filamentary current.

• Force between two filamentary currents.

• Magnetic boundary conditions.

• Self inductance and mutual inductance.

• Magnetic energy density.
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Why study magnetic field
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Complicated powering system

Free and easy WPT 

Motivations



Why study magnetic field

There are two different ways to provide electrical energy wirelessly:

• Energy harvesting (EH).

• Wireless power transmission (WPT).
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Why study magnetic field
Wireless Power TransferEnergy Harvesting



Why study magnetic field
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Inductive coupling for WPT

Resonant inductive 

coupling 

WPT for biomedical 

applications
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Biot-Savart Law
The source of the steady magnetic field may be: 

• Permanent magnet, or

• DC current.

In this chapter, we are only concerned the magnetic fields produced by dc currents
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Biot-Savart Law

The Biot-Savart Law specifies the magnetic field intensity,  H, 

arising from a “point source”current element of differential 

length dL.

Note in particular the inverse-square distance

dependence, and the fact that the cross product

will yield a field vector that points into the

page.

Note the similarity to Coulomb’s Law, in which 

a point charge of magnitude dQ1 at Point 1 would 

generate electric field at Point 2 given by:

The units of H are [A/m]



At point P, the magnetic field associated with the

differential current element IdL is

To determine the total field arising from the closed circuit 

path, we sum the contributions from the current elements 

that make up the entire loop, or

Magnetic Field Arising From a 

Circulating Current

Biot-Savart Law
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(1)

(2)



On a surface that carries uniform surface current density K [A/m], the 

current within width b is

Thus the differential current element I dL, where dL is in the direction 

of the current, may be expressed in terms of surface current density K 

or current density J,

The magnetic field arising from a current sheet is thus found from the 

two-dimensional form of the Biot-Savart law:

In a similar way, a volume current will be made up of three-dimensional 

current elements, and so the Biot-Savart law for this case becomes:

Two- and Three-Dimensional Currents
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Biot-Savart Law



In this example, we evaluate the magnetic field intensity on the y axis (equivalently in the xy plane) 

arising from a filament current of infinite length on the z axis.

Using the drawing, we identify:

and so.. 

so that:

Example of the Biot-Savart Law
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Biot-Savart Law

+

𝑑H



+

𝑑H

We now have:

Integrate this over the entire wire:

..after carrying out the cross product

Example: continued
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Biot-Savart Law

𝑎𝜌

𝑎𝜙𝑎𝑧



In this case, the field is to be found in the xy plane at Point 2. The Biot-Savart integral is taken over 

the wire length:

Field arising from a Finite Current Segment
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Biot-Savart Law
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Biot-Savart Law

R
z

ρ

α 

 

    






























2/12

1

2

1

2/12

2

2

2

2

122

2

33

2

32/322

1
                         

sinsin
1

                         

 cos
1

                         

sec

 sec

2

1

z

z

z

z

d

d
R

dz

z

dz

























sec   cos  R
R

Using the drawing, also 

(4)

Example: continued
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Biot-Savart Law
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Example: continued

If one or both ends are below point 2, then α1 is or both α1

and α2 are negative.



we have:

finally:

Current is into the page. 

Magnetic field streamlines 

are concentric circles, whose magnitudes

decrease as the inverse distance from the z axis

Evaluating the integral in (6):
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Biot-Savart Law

Special case: for infinite wire  -∞ < Z < ∞
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Example: continued

(7) 
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Biot-Savart Law
Example 8.1:
Determine H at P2(0.4, 0.3, 0) in the field of an 8 A filamentary current is directed inward from

infinity to the origin on the positive x axis, and then outward to infinity along the y axis. This

arrangement is shown in the figure below.

Solution:
We first consider the semi-infinite current on the x axis

-∞ < x < 0

   )3.0/4.0(tan   ,90

    tan  because

1

21





xx

xyx





The radial distance ρ is measured from the x axis, and we 

have ρx = 0.3.
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Biot-Savart Law

  


asinsin
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Thus, this contribution to H2 is

-az

The unit vector aϕ must also be referred to the x axis. We 

see that it becomes -az .Therefore,

Ix

Hx
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Biot-Savart Law

-az

Iy

Hy P2

For the current on the y axis, we have

90 and ,-36.9 )4.0/3.0(tan 0.4, 2

1

1y  

yy  

It follows that

Adding these results, we have



Biot-Savart Law
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8

8

Home work



Consider a circular current loop of radius a in the x-y plane, which carries steady current I. We wish 

to find the magnetic field strength anywhere on the z axis.

We will use the Biot-Savart Law:

where:

Another Example: Magnetic Field from a Current Loop
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Biot-Savart Law



Substituting the previous expressions, the Biot-Savart Law becomes:

carry out the cross products to find:

but we must include the angle dependence in the radial 

unit vector:

with this substitution, the radial component will integrate to zero, 

meaning that all radial components will cancel on the z axis.  
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Biot-Savart Law
Example continued

𝑎𝜌

𝑎𝜙𝑎𝑧



Now, only the z component remains, and the integral evaluates 

easily:

Example continued
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Biot-Savart Law
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Ampere’s Circuital Law

Ampere’s Circuital Law states that the line integral of H about any closed path is exactly equal to 

the direct current enclosed by that path.

In the figure at right, the integral of H about closed paths a and b 

gives the total current I,  while the integral over path c  gives 

only that portion of the current that lies within c

After solving a number of simple electrostatic problems with Coulomb’s law, we found that the same

problems could be solved much more easily by using Gauss’s law whenever a high degree of

symmetry was present. Again, an analogous procedure exists in magnetic fields.



Choosing path a, and integrating H around the circle of radius  gives the enclosed current, I:

so that: as before, given in Eq. (7).

Symmetry suggests that H will be circular, constant-valued at constant radius, and centered on the 

current (z) axis.

Ampere’s Law Applied to a Long Wire
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Ampere’s Circuital Law
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Ampere’s Circuital Law
Important notes

The Biot-Savart law is resemble the coulomb's law. Both show linear relationship between 

source and field

Ampere’s Circuital law is resemble the gauss's law. 

  enclQdsD

Ampere’s Circuital Law Gauss’s Law

Biot-Savart Law Coulomb’s Law



In the coax line, we have two concentric solid conductors that 

carry equal and opposite currents, I.  

The line is assumed to be infinitely long, and the circular

symmetry suggests that H will be entirely  - directed, and will

vary only with radius .

Our objective is to find the magnetic field for all values of 

Coaxial Transmission Line

Ampere’s Circuital Law
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With current uniformly distributed inside the conductors, the H can be assumed circular everywhere.

Inside the inner conductor, and at radius we again have:

But now, the current enclosed is

so that

or finally:2

2
2

2encl

2

2

encl

)(

    ),(

a

I

a

I
I

a

I
JJI











 
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Ampere’s Circuital Law
Coaxial Transmission Line

(8)



The field between conductors is thus found to be the same as that of 

filament conductor on the z axis that carries current, I.  Specifically:

a < < b

Field Between Conductors

Ampere’s Circuital Law
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Coaxial Transmission Line

(9)



Inside the outer conductor, the enclosed current consists of that within the inner conductor plus that 

portion of the outer conductor current existing at radii less than 

Ampere’s Circuital Law becomes

..and so finally:

Field Inside the Outer Conductor

Coaxial Transmission Line
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Ampere’s Circuital Law
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Ampere’s Circuital Law

Outside the transmission line, where > c, no current is enclosed by the integration path, and so 

0

As the current is uniformly distributed, and since we have circular

symmetry, the field would have to be constant over the circular

integration path, and so it must be true that:

Coaxial Transmission Line

0)(  IIIencl

Field Outside Both Conductors

(11)



Combining the previous results, and assigning dimensions for a coaxial cable in which b = 3a, c = 4a.

, we find the magnetic-field-strength variation with radius is as shown in the Figure below.

Coaxial Transmission Line

Magnetic Field Strength as a Function of Radius in the Coax Line
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Ampere’s Circuital Law
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Magnetic Field Arising from a Current Sheet

For a uniform plane current in the y direction, we expect an x-directed H field from symmetry.

Applying Ampere’s circuital law to the path 1-1'- 2' – 2- 1, we find:

or

In other words, the magnetic field is discontinuous across the current sheet by the magnitude of the 

surface current density.
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Magnetic Field Arising from a Current Sheet

If instead, the upper path is elevated to the line between 3 and 3' , the same current is enclosed 

and we would have

from which we conclude that 

Because of the symmetry, then, the magnetic field

intensity on one side of the current sheet is the negative

of that on the other. we may state that

and

so the field is constant in each region (above and below the current plane)
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Magnetic Field Arising from a Current Sheet

The actual field configuration is shown below, in which magnetic field above the current sheet is 

equal in magnitude, but in the direction opposite to the field below the sheet.

The field in either region is found by the cross product:

where aN is the unit vector that is normal to the

current sheet, and that points into the region in

which the magnetic field is to be evaluated.



12/8/2017 37

Magnetic Field Arising from Two Current Sheets

Here are two parallel currents, equal and opposite, as you would find in a parallel-plate transmission 

line.  If the sheets are much wider than their spacing, then the magnetic field will be contained in the 

region between plates, and will be nearly zero outside.

K1 = -Ky ay

K2 = Ky ay

Hx1 (z < -d/2 )

Hx1 (-d /2 < z < d/2 )

Hx2 (-d /2 < z < d/2 )

Hx2 (z < -d/2 )

Hx1 (z > d/2 )

Hx2 (z > d/2 ) These fields cancel for current sheets of 

infinite width.

These fields cancel for current sheets of 

infinite width.

These fields are equal and add to give

H = K x aN (-d/2 < z < d/2 )

where K is either K1 or K2

(12)



Home Work
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8
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Magnetic Field of a Solenoid

Using the Biot-Savart Law, we previously found the magnetic field 

on the z axis from a circular current loop:

We will now use this result as a building block to

construct the magnetic field on the axis of a solenoid -

formed by a stack of identical current loops, centered on

the z axis.

Current Loop Field
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Magnetic Field of a Solenoid

We consider the single current loop field as a differential contribution to the 

total field from a stack of N closely-spaced loops, each of which carries 

current I.  The length of the stack (solenoid) is d, so therefore the density of 

turns will be N/d.

Now the current in the turns within a differential length, dz, will be

z

-d/2

d/2

so that the previous result for H from a single loop:

now becomes:

in which z is measured from the center of the coil, where we wish to evaluate the field.

We consider this as our differential “loop current”

Magnetic Field inside a real Solenoid

(13)



z

-d/2

d/2

The total field on the z axis at z = 0 will be the sum of the field contributions 

from all turns in the coil -- or the integral of dH over the length of the solenoid.

Magnetic Field inside a real Solenoid
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Magnetic Field of a Solenoid



z

-d/2

d/2

We now have the on-axis field at the solenoid midpoint (z = 0):

Note that for long solenoids, for which 𝑑 ≫ 𝑎 , the result simplifies 

to: 

(           )

This result is valid at all on-axis positions deep within long coils -- at distances from each end of 

several radii.  

Magnetic Field inside a real Solenoid

Approximation for Long Solenoids 
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Magnetic Field of a Solenoid

(14)

(15)



The solenoid of our previous example was assumed to have many tightly-wound turns, with several 

existing within a differential length, dz. We could model such a current configuration as a continuous 

surface current of density K = Ka a A/m.

In other words, the on-axis field magnitude near the center of a cylindrical current sheet, 

where current circulates around the z axis, and whose length is much greater than its 

radius, is just the surface current density. 

d/2

-d/2

Another Interpretation: Continuous Surface Current
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Magnetic Field of a Solenoid

na KH

aan For a point inside the solenoid

zaa aKaaK  )()(H 

𝑎𝜌

𝑎𝜙𝑎𝑧

zza a
d

NI
aK H

From Eq. (12)

Since
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Toroid Magnetic Field
A toroid is a doughnut-shaped set of windings around a core material.  The cross-section could be 

circular (as shown here, with radius a) or any other shape.    

Below, a slice of the toroid is shown, with current emerging from the screen around the inner 

periphery (in the positive z direction).  The windings are modeled as N individual current loops, each 

of which carries current I.
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Ampere’s Law as Applied to a Toroid

Ampere’s Circuital Law can be applied to a toroid by taking a closed loop integral around the

circular contour C at radius Magnetic field H is presumed to be circular, and a function of radius

only at locations within the toroid that are not too close to the individual windings. Under this

condition, we would assume:

Ampere’s Law now takes the form:

so that….

This approximation improves as the density of turns gets higher (using more turns with finer wire).

Performing the same integrals over contours drawn in the outside region 

will lead to zero magnetic field there, because no current is enclosed in 

either case.
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Report

Idea of Magnetic Tape Recording


